
Formal Foundations for Hierarchical Safety Cases

Ewen Denney and Ganesh Pai
SGT / NASA Ames Research Center

Moffett Field, CA 94035, USA

{ewen.denney, ganesh.pai}@nasa.gov

Iain Whiteside
School of Computing Science

Newcastle University, UK

iain.whiteside@newcastle.ac.uk

Abstract—Safety cases are increasingly being required in many
safety-critical domains to assure, using structured argumenta-
tion and evidence, that a system is acceptably safe. However,
comprehensive system-wide safety arguments present appreciable
challenges to develop, understand, evaluate, and manage, partly
due to the volume of information that they aggregate, such as
the results of hazard analysis, requirements analysis, testing,
formal verification, and other engineering activities. Previously,
we have proposed hierarchical safety cases, hicases, to aid the
comprehension of safety case argument structures. In this paper,
we build on a formal notion of safety case to formalise the use
of hierarchy as a structuring technique, and show that hicases
satisfy several desirable properties. Our aim is to provide a
formal, theoretical foundation for safety cases. In particular, we
believe that tools for high assurance systems should be granted
similar assurance to the systems to which they are applied. To
this end, we formally specify and prove the correctness of key
operations for constructing and managing hicases, which gives
the specification for implementing hicases in AdvoCATE, our
toolset for safety case automation. We motivate and explain the
theory with the help of a simple running example, extracted from
a real safety case and developed using AdvoCATE.

Index Terms—Abstraction, Hierarchy, Safety assurance, Safety
cases, Tool support

I. INTRODUCTION

The development and acceptance of a safety case is not

only a key element of safety regulation in many safety-critical

sectors [1], such as nuclear, defence, transportation, and oil

& gas, but also increasingly becoming an accepted safety

certification practice. Safety (or, more generally, assurance)

cases are structured arguments supported by a body of ev-

idence, providing a convincing and valid justification that a

system meets its (safety) assurance requirements, for a given

application in a given operating environment. Safety cases can

be documented in a variety of ways, e.g., a combination of

text descriptions and diagrams. Graphical notations, such as

the Goal Structuring Notation (GSN) [2], have emerged over

the past decade providing a graphical syntax to document the

argument structure embodying a safety case1. However, these

structures are semi-formal and, per se, not checked by any

formal system. Rather, they are designed, in part, to provide

a degree of structure to ameliorate safety case comprehension

and inspection.
Currently, safety cases are largely manually created often

using common argumentation patterns, similar to those found

1We will use argument structure and safety case interchangeably in this
paper; however, a safety case is the argument structure together with all the
documents to which it refers.

in software engineering. In general, understanding, developing,

evaluating, and maintaining safety cases remains a challenge

due to the volume and diversity of information that a typical

system safety case must aggregate when best engineering

practice is followed, e.g., the mandated work products which

show compliance to the relevant regulations and standards,

the results of (safety, system, and software) analyses, various

inspections, audits, reviews, simulations, verification activities

including various kinds of subsystem/system tests, formal

verification, and, if applicable, also the evidence of safe

performance from prior operations. As an anecdotal example,

the size of the preliminary safety case for surveillance on

airport surfaces [3] is about 200 pages, and is expected to

grow as the interim and operational safety cases are created.

As a safety case evolves and lower-level details are added

during refinement, the natural high-level structure that patterns

offer can be obscured, making comprehension difficult. For

example, to develop a claim of correctness of some safety-

relevant function, say, we can iteratively argue correctness

by formalizing the claim, through iterative property decom-

position, and formal verification [4]. However, for such an

argument, the relevance of a very low-level claim to the wider

context of system safety may be difficult to gauge if the claim

exists deep within the natural system hierarchy.

These observations, and our own prior experience [5],

suggest a need for abstraction and structuring mechanisms in

creating and managing a safety case. Additionally, since safety

cases are intended to be a basis for various decisions (e.g.,

whether or not a system is acceptably safe, should additional

evidence be required to accept a claim, whether or not an

argument is fallacious, etc.) we (and others [6]) believe that

there is also a need for a theoretical foundation: both for the

basic concepts of a safety case, and for more advanced notions,

such as hierarchy and its (automated) creation. The broad goal

is to make safety cases amenable to formal analysis, thereby

providing greater assurance.

Our work is further motivated by the need to provide tool

support that also has a formal basis: our assurance case tool,

AdvoCATE [7], can assist in and, to an extent automate,

safety case construction from artefacts such as requirements

tables [8], safety case patterns [9], and external verification

tools [10]. Such generated arguments have inherent structure

that can be exploited by hierarchisation. However, the formal

specification against which it can be verified that AdvoCATE

operations (including those relevant for hierarchy) are well-

https://ntrs.nasa.gov/search.jsp?R=20160002416 2020-05-10T02:28:13+00:00Z

Fig. 1. Flat safety argument fragment, extracted from the safety case for a ground-based detect and avoid capability for UAS operations [14].

behaved, has lagged implementation, thus presenting a source

of assurance deficits insofar as the arguments developed using

tool-based automation are concerned. The work in this paper

attempts to close that gap specifically with respect to hierarchi-

cal safety cases. The inspiration for our work comes from ideas

from formal proof, where hierarchy can be added to proof

trees [11]. We believe that a formal foundation will provide the

requisite framework for independently and rigorously assuring

that the hicases created using tool-supported automation are

well-founded.
Previously [12], [13] we have proposed hierarchical safety

cases, hicases, to aid comprehension of safety case argument

structures through structured abstraction. In this paper, we use

a running example, i.e., a fragment of an argument structure

extracted from a real aviation system safety case [14], to show

how hierarchical structuring can be introduced for abstraction

(Section II, and Fig. 1). We use these modifications to motivate

our formal definition of hicases, give the properties for well-

formedness, and formalise the operations relevant for our

implementation (Section III). In particular, our paper makes

the following contributions: (i) a clear and abstract definition

of the core concepts of the GSN standard [2] and a formal

definition of the extension to hierarchical safety cases; (ii) an

investigation of hicase properties: that hicases unfold to a non-

hierarchical skeleton, that the hierarchical node types are mu-

tually exclusive, and that (flat) safety cases can be embedded

in a hicase; and, (iii) formal definitions and correctness proofs

of key operations of hicases: a definition of views through the

hierarchy, and the syntactic criteria governing when a frag-

ment of a safety case can be hierarchically abstracted. These

definitions, along with the formalization hicases, provide the

specification for our implementation of hicases in AdvoCATE.
Finally, we illustrate our implementation of hicases in Advo-

CATE (Section IV) by hierarchising the running example.

II. RUNNING EXAMPLE

A. Basic Goal Structuring Notation
Fig. 1 shows part of an argument structure extracted from a

much larger safety case for the assurance of flight transit oper-

ations involving a Ground-based Detect and Avoid (GBDAA)
capability [14]. The main claim (G7) for the fragment shown

concerns the acceptability of the GBDAA function to safely

avoid intruder air traffic when an Unmanned Aircraft System

(UAS) is transiting through its operational airspace. In brief,

to provide assurance that this claim holds, the argument

presents a chain of reasoning (along with evidence) regarding

the procedural and technical implementations of the avoid-

ance function. The former further includes reasoning over

deconfliction and operator-specific procedures, whereas the

latter considers airworthiness and equipage issues. For a more

detailed description, refer to [14].
We have presented the safety case fragment of Fig. 1 using

the Goal Structuring Notation (GSN) [2], a graphical notation

for representing the structure of an argument from its premises

to its conclusions. Note that this structure has no hierarchical

abstraction and we consider it to be a flat safety argument. As

shown, the core elements of GSN each represent particular

types of information that can be conveyed through a safety

case. Specifically, we can state safety claims using goals and

sub-goals (rectangle), e.g., nodes G7 and G8; the strategies
to develop goals (parallelogram), e.g., nodes S1 and S5; the

evidence used to substantiate the claims (circle), e.g., nodes

E1 and E2; together with the appropriate associated context
(rounded rectangle) e.g., nodes C1 and C15; assumptions,

and justifications (ovals annotated with A and J respectively),

e.g., nodes A1, and J2. GSN also provides a graphical ‘◇’

annotation to indicate undeveloped (i.e., incomplete) elements,

e.g., node G11. There are two link types with which to

connect these notational elements: in context of (�) and

is supported by (�). In addition to these core constructs,

GSN provides infrastructure for modular abstraction via the

notions of modules, contracts, and so-called away nodes,

which we do not consider in scope for this paper. Moreover,

GSN provides notational extensions for specifying argument

structure patterns that, likewise, are out of scope.
In general, a GSN argument structure is a tree, with a goal

as root, stating the safety objective to be demonstrated. It

can be useful to relax this condition, and consider partial
safety cases, i.e., argument structure fragments with a goal

as a local root (as is the case for Fig. 1), each of which will

be connected, eventually, to a unique global root goal. It is

worth noting that the GSN standard [2] is very flexible, i.e.,

GSN elements are not subject to many syntactic restrictions

and have no (formal) semantics. We believe that well-designed

safety cases need such restrictions, and in this paper we will

utilise our definitions to restrict the types of safety cases that

can be constructed to those that are sensible.

B. Abstracting Structure with Hierarchy
Now we describe how hierarchical structuring can be intro-

duced into the flat argument structure of Fig. 1. Specifically,

Fig. 2 shows the hierarchisation of one subtree of Fig. 1, while

in Fig. 3 we show how Fig. 1 can be completely hierarchised.

As shown in these figures, there are several ways in which

a safety case can be hierarchically structured, by introducing

hierarchical nodes (hinodes) of different types. Additionally,

each hierarchical node can have two possible views: it can

be open and the argument structure that it contains is visible

thereby allowing detailed inspection; or, it can be closed and

be viewed abstractly as a safety case node of the given type.

In general, we permit three types of hinodes:

(1) Hierarchical goals are an abstraction to hide a chain of

goals and one of their main purposes is to provide a high-

level view of an argument structure. Thus, in Fig. 1, we can

hierarchically abstract the entire subtree (with root at G8) into

the higoal HG2 (See Fig. 2 and Fig. 3).

(2) Hierarchical strategies either (i) abstract a goal refine-

ment sequence that is considered as supplemental to the main

argument of interest, thus reducing the degree of branching in

the argument structure; or, (ii) aggregate a meaningful chain

of (one or more) related strategy applications.

For instance, in Fig. 1 the fragment of the argument bet-

ween, and including, strategy nodes S2 and S4 is a chain

of strategies that we can consider together as a higher-level

strategy. Thus, we can abstract that fragment as a hierarchical

strategy. Fig. 2 presents this hierarchical strategy in its open
view, where both the hinode and its content are visible (hinode

HS1). Fig. 3 shows HS1 in the closed view, acting as a

normal strategy node and reducing the size of the safety case.

Effectively, the closed view allows parts of a safety case to be

viewed at a more abstract level.

Of course, to guarantee assurance, the safety case must

still be reviewed in its entirety, but we believe hierarchical

abstraction enables both abstract content and concrete details

to be viewed as required.

(3) Hierarchical evidence abstracts a fully developed chain

of related strategy applications. In Fig. 1, since the fragment

starting from the strategy node S6 is downwards complete,

i.e., it has no undeveloped elements, we can construct a

hierarchical entity that abstracts and encapsulates it. In other

words, the subtree (with root at strategy node S6) that justifies

goal G15 can be packaged as a hierarchical evidence node

(Hinode HE2 in Fig. 2, and Fig. 3).

C. Restrictions on Hierarchical Structuring

There are restrictions on that which can be abstracted inside

a hinode: firstly, to preserve well-formedness, we require that

input and output node types are consistent. Thus, a hierarchical

strategy would have a goal as an incoming node and goals as

outgoing nodes, in the same way as a normal strategy. Next,

we cannot abstract disconnected fragments as there would be

no path from the input goal to all the outputs. A design

decision was made to place any context, justification, and

assumption nodes inside a hinode; thus, we may not link

a hinode to any other node using a � link type. Finally,

we permit containment of hinodes by other hinodes, which

allows us to nest hierarchies (see Fig. 2, where the higoal

HG2 contains the hinodes HS1 and HE2) as a way to manage

argument structure size. The combination of strict control over

entities that can be abstracted, and the flexibility offered by

a partial order of hierarchy gives rise to intricate definitions

of the key operations on hicases. To mitigate against potential

flaws in hierarchisation and views, we have proved that these

operations are correct. Note that the value addition that hinodes

provide, is mainly to the structure of the argument. Thus,

whereas a hicase communicates the same essential argument

as its flat counterpart, we believe that the former may be,

intuitively, easier to understand during argument review. Fur-

thermore, the relevance of the formalization (described next)

to the higher assurance of a safety case is the confidence that

can be placed in the well-formedness of a hicase constructed

from an automatic hierarchisation.

III. FORMALISATION

A. Preliminaries

First, we give a mathematical account of (flat) safety cases

by representing them formally as a labelled tree, where the

labelling function distinguishes the types of nodes subject to

some intuitive well-formedness conditions. Let {s, g, e, a, j, c}
be the set of node types: strategy, goal, evidence, assumption,

justification, and context respectively. The subset {s, g, e} are

core node types; and {a, j, c} are contextual nodes.

Definition 1 (Partial Safety Case). A partial safety case
(argument structure) is a triple ⟨N, l,→⟩, comprising nodes

N , the labelling function l ∶ N → {s, g, e, a, j, c}, and the

connector relation, →∶ ⟨N,N⟩, which is defined on nodes. We

define the reflexive, transitive closure,→∗∶ ⟨N,N⟩, in the usual

way. We require the connector relation to form a finite forest
with the operation isroot→(r) checking if the node r is a root

in some tree. Furthermore, the following conditions must be

met:

(1) Each part of the partial safety case has a root goal:

isroot→(v) ⇒ l(v) = g
(2) Connectors only leave strategies or goals: v → w⇒ l(v) ∈
{s, g}

(3) Goals cannot connect to other goals: (v → w) ∧ (l(v) =
g) ⇒ l(w) ∈ {s, e, a, j, c}

(4) Strategies cannot connect to other strategies or evidence:

(v → w) ∧ (l(v) = s) ⇒ l(w) ∈ {g, a, j, c}

By virtue of forming a tree, we ensure that nodes cannot

connect to themselves, that there are no cycles and, finally,

that two nodes cannot connect to the same child node2.

For uniformity, Definition 1 does not make a distinction

between is supported by edges that connect core nodes, and in
context of edges that connect contextual nodes. We make this

distinction with a notational convention: We write v1 � v2, if

2Arguments in some domains, such as security assurance, commonly exhibit
structures wherein multiple claims may be supported by the same evidence.
Though our tool does allow this, evidence assertions (i.e., claims that can be
made given the evidence provided) are unlikely to be exactly identical in a
strictly well-formed argument, when used in support of higher-level claims.
The theory described here uses this strict definition.

Fig. 2. Hierarchisation of a subtree of the argument structure of Fig. 1, with
all hinodes open. The remaining branches of the argument have been hidden.

v1 → v2 and l(v2) ∈ {a, j, c}. Contextual nodes play little part

in what follows, so we will write v1 → v2 to mean that l(v2) ∈
{s, g, e}. We say that an argument structure is a total safety

case when it has a unique root. We will also refer to partial

safety cases as flat when we want to emphasize their non-

hierarchical nature. An important notion that can be defined

on a safety case is that of being fully developed, as one way

to syntactically characterize its internal completeness.

Definition 2 (Fully Developed Safety Case). A total safety

case ⟨N, l,→⟩, is fully developed if for every goal g ∈ N ,

∃v ∈ N , such that g →∗ v with l(v) = e. That is, all goals lead

to evidence.

In fact, it is easily seen that this can be equivalently

rephrased to state that all paths (connecting core nodes) lead

to evidence. In other words, irrespective of node content, we

say that a total safety case is internally complete if it is fully

developed. Although there are many potential definitions of

completeness, Definition 2 is the one we will use subsequently,

in defining hierarchy.

Note, also, that in Definition 1 we have excluded the concept

of an undeveloped node, and capture it by means of attributes.

Our tool AdvoCATE [7], for example, permits the following

attributes: (a) developed: whether the node is developed or

still to be developed; (b) identifier: of the goal, strategy, etc.;

(c) description: of the goal, strategy, etc. In general, we allow

safety case nodes to contain arbitrary attributes, or metadata;

in turn, this allows us to define complex rules, e.g., for node

colouring. Attributes for nodes are accessed via projection

functions tbd , id , etc., e.g., the attribute value associated with

the undeveloped goal G9 in Fig. 1 is tbd(G9) = true.

Now, we extend Definition 1 to hierarchical safety cases (or

hicases for short). Hicases extend the definition of safety cases

with an additional relation to represent hierarchical structure.

We use the partial order symbol ≤ where n < n′ means that

the node n is inside n′. We wish to define hicases in such a

way that we can always unfold all the hierarchy to regain a

flat safety case.

Definition 3 (Partial Hierarchical Safety Cases). A partial

hierarchical safety case is a tuple ⟨N, l,→,≤⟩. The set of

nodes N , labelling function l, and connector relation → are

as given in Definition 1. The forest ⟨N,→⟩ is subject to

all conditions except condition (1) of Definition 1.3 The

hierarchical relation is a (necessarily finite) forest qua poset
⟨N,≤⟩. Generalising condition (1), global roots must be goals:

isroot→,≤(v) ⇒ l(v) = g. Finally, we impose conditions on the

interaction between the two relations → and ≤:
(1) The connectors will target the outer nodes: (v → w1) ∧
(w1 < w2) ⇒ v < w2.

(2) Connectors come from inner nodes: (v → w2) ∧ (w1 ≤
v) ⇒ v = w1.

(3) Enclosure and connectors are mutually exclusive: (v ≤
w) ∧ (v →∗ w) ⇒ v = w.

(4) Two nodes which are both at the top level (or immediately

included in some node) means at most one has no incom-

ing → edge. That is: siblings<(v1, v2) ∧ isroot→(v1) ∧
isroot→(v2) ⇒ v1 = v2 where siblings≤ refers to sibling-
ness in the forest.

(5) If v is a local root (using →) of a higher-level node w
(i.e., v < w), then

3Since the root of a hinode will match the type of the node itself.

– l(w) = s, if l(v) = s ∧ [∀v′ v′′.(v′ < w ∧ v′ → v′′ ∧
v′′ ≮ w) ⇒ l(v′′) = g∨ subtree rooted at v is not fully

developed], or

– l(w) = e, if l(v) = s∨ l(v) = e∧[∄v′ v′′. (v′ < w∧v′′ ≮
w ∧ v′ → v′′)∧ subtree rooted at v is fully developed,

or

– l(w) = g, if l(v) = g ∧∀v′ v′′. (v′ < w ∧ v′ → v′′ ∧ v′′ ≮
w) ⇒ l(v′′) = s ∨ l(v′′) = e

Conditions (1) – (4) of Definition 3 are designed to produce

a mapping from a hierarchical safety case to its (flat) safety

case unfolding, i.e., its skeleton, and they are identical to the

conditions on hierarchical proofs [11]. We show subsequently

(Section III-B), that safety cases can be viewed as (trivial)

hicases and that the skeleton operation unfolds into a flat safety

case. The final condition ensures that:

– A hierarchical strategy must have a strategy as root, and

either (a) any node immediately outside the hierarchical

strategy is a goal, or (b) the subtree with root v inside, is not

fully developed. The latter case catches the possibility that

there are no outgoing goals, but the node is not evidence.

– A hierarchical evidence node is the special case of a hierar-

chical strategy with no outgoing goals, but the subtree with

root v is fully developed. Degenerate hierarchical evidence

nodes are also allowed with the l(v) = e condition.

– A higoal must have a goal as root, and any nodes immedi-

ately outside must be strategy or evidence nodes.

– All other node types must be leaves of <.
Hicases also have attributes in the same manner as their

flat counterparts; however, some of the attributes for hinodes

must be consistent with those of the nodes they enclose. For

example, a hinode is considered undeveloped if any of its

contained nodes is undeveloped.

B. Hicase Properties

In this section, we present and prove4 the hicase properties

that demonstrate that hicases are fit for purpose. In particular,

we show (a) the mutual exclusivity of hinodes, demonstrating

that the choice of hierarchical node type is uniquely deter-

mined by the contents; (b) the skeleton operation that removes

hierarchical structure, leaving a well-formed flat safety case;

(c) the precise conditions under which a hicase fragment can

be hierarchised, and the correctness of hierarchisation in the

technical sense that adding hierarchy preserves skeletons; and,

(d) a notion of view through the hierarchy, that formalises the

notion that a hinode can be either seen as a black-box node,

or have its contents exposed. Firstly, we establish that there is

no ambiguity about the type of a hierarchical node.

Theorem 1 (Mutual Exclusivity). Any hierarchical node—not

a leaf in the ≤ forest—can only satisfy the criteria for one of

the hierarchical strategy, evidence, or goal types.

Next, we relate safety cases and hicases: our main result

is that the hierarchy can be unfolded to produce a flat safety

4Due to space constraints, we omit the proofs of mutual exclusivity and
correctness of the skeleton operation.

case. Conversely, we note that a safety case ⟨N, l,→⟩ can be

mapped to a hicase ⟨N, l,→, idN ⟩ where idN is the trivial

partial order with only reflexive pairs. This ordering trivially

satisfies all the well-formedness properties of a hicase.

To retrieve the original safety case from a hicase, we

define a skeleton operation, (sk), mapping hicases into flat

safety cases and state that the tuple it constructs is indeed

well-formed with respect to the safety case conditions of

Definition 1.

Definition 4 (Skeleton Operation). The skeleton operation, sk,

is defined to map a hierarchical safety case ⟨N, l,→,≤⟩ to a

safety case ⟨N ′, l′,→′⟩, where N ′ is the set of leaves of ≤, l′

is the restriction of the labelling function l, and v1 →
′ v2 iff:

(1) v1 → v2, or (2) ∃ w. v1 → w and v2 is a local root of w.

Theorem 2 (Skeleton). If h is a hicase, then sk(h) is a

well-formed safety case. That is, it satisfies the properties in

Definition 1.

Now, we characterise the fragments of a hicase in which

it is possible to create a hinode. Thereafter, we describe the

hierarchisation operation that encloses the fragment in a hicase

with a new hinode. Finally, we state the correctness of this

operation, i.e., it preserves skeletons. As a first step towards

this, we define a safety case fragment.

Definition 5 (Safety Case Fragment). Given a safety case

⟨N, l,→⟩ and a set F ⊆ N . A safety case fragment is a

tuple ⟨F, l↾F ,→↾F ⟩ such that ⟨F,→↾F ⟩ is closed under � and

→ ←, with root v where l↾F (v) ∈ {s, g, e}.

That is to say, a fragment is a connected subset of a safety

case. We write → ← to mean that if v1 → v2 → v3 and

v1, v3 ∈ F then v2 ∈ F . A fragment can simply be one node

(a strategy, goal, or evidence node); or, it may be the whole

safety case. A safety case fragment will also satisfy properties

(2) – (4) of Definition 1. If the root is a goal, it will be a

safety case, i.e., also satisfy property (1).

Fig. 2 shows an example of a safety case fragment enclosed

by a hierarchical evidence node (HE2). Now, we extend the

definition to the more general situation of hicases, by ensuring

all nodes inside a chosen hinode are also part of the fragment:

Definition 6 (Hicase Fragment). Given a hicase ⟨N, l,→,≤⟩,
a hicase fragment is a tuple ⟨F, l↾F ,→↾F ,≤↾F ⟩ such that the

following conditions hold:

(1) F ⊆ N and is closed under � and → ← as before.

(2) F is also closed under ≤ i.e., if w ∈ F and v ≤ w then

v ∈ F .

(3) For v, v′ ∈ F , if v → w and v′ ≤ w then w ∈ F , i.e., it is

closed under entering hierarchy.

If a hicase fragment satisfies an extra structural condition,

then it can be hierarchised and we say that the fragment

is hierarchisable. That is, it corresponds to the set of nodes

enclosed by a hinode.

Definition 7 (Hierarchisable Hicase Fragment). A hicase

fragment defined by the set F with root v is hierarchisable iff:

l↾F (v) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

s ∧ all leaves w are strategies or evidence:

l↾F (w) ∈ {s, e}, or

g ∧ all leaves w are goals or evidence:

l↾F (w) ∈ {g, e}, or

e

That is, if the hicase fragment has a strategy as root, for

example, then the leaves (in that fragment) must be either

strategies (producing the output goals of the hierarchical

strategy) or evidence (no outputs).

Definition 8 (Hierarchisation). Given a hierarchisable frag-

ment ⟨F, lF ,→F ,≤F ⟩ of a hierarchical safety case ⟨N, l,→,
≤⟩, let f ∈ F be the global root of the fragment; i.e., a root

of → and of ≤. Furthermore, let fp be the parent of f with

respect to ≤ (if one exists). We define the hierarchisation of

the fragment by a new node h as ⟨Nh, lh,→h,≤h⟩ where the

individual elements are defined as follows:

(1) N ′ = N ∪ {h}
(2) ≤ is extended to ≤h where h < fp and v < h, for all v ∈ F .

(3) For defining →h there are two possibilities:

(a) if there exists v ∈ N such that v → f then →f is the

modification to → such that v → h instead;

(b) otherwise, →h=→.

(4) Finally, we extend l by defining lh(h):
(a) if l(f) ∈ {g, e} then lh(h) = l(f);
(b) if l(f) = s and there is a leaf of → in the fragment

that is a strategy, then l(h) = s.

(c) if l(f) = s and all leaves are evidence nodes. Then we

need to check that there are no nodes connected to f
that are not in the fragment, i.e., if ∃v′ ∈ N such that

f → v′ but v′ ∉ F then l(h) = s; otherwise, l(h) = e.

Theorem 3 (Correctness of Hierarchisation). If ⟨F, lF ,→F ,
≤F ⟩ is a fragment of a hicase h1 = ⟨N, l,→,≤⟩, and h2 =
⟨Nh, lh,→h,≤h⟩ is the hierarchisation of a new hinode h onto

h1, then h2 is a well-formed hicase, and the hierarchisation is

skeleton-preserving, i.e., sk(h1) = sk(h2).

Proof. The proof requires showing each of the cases of the

definition hold; we just sketch some of the details, e.g., →h

forms a forest: if →h=→ this is trivial; if not, we note that

the modification fp → h does not break the partial order

axioms. In particular, it cannot cause cycles since h did not

previously exist. To show condition (5) of Definition 3, we

need, in part, a case analysis on l(h). Then, the conditions

on a hierarchisable fragment allow us to show that this

property holds. To show that the skeletons match, note that

the modification (1) in defining →h is exactly the opposite of

the skeleton transformation (2) from Definition 4.

To understand the open/closed representation of hinodes in

a hicase, we introduce the notion of a view. A view can be

seen as a particular slice through the hierarchy: either choose

the hinode or its contents. We define a hicase view as follows:

Definition 9 (Hicase View). Given a hicase ⟨N, l,→,≤⟩. Let

N ′ ⊂ N such that N ′ is closed under ‘<’ incomparability, i.e.,

(1) v1, v2 ∈ N
′ ⇒ v1 ≮ v2 and v2 ≮ v1.

Fig. 3. A complete hierarchisation of the flat argument structure of Fig. 1, showing containment as well as both open and closed hinodes.

(2) v1 ∈ N
′ and v2 ≮ v1 and v1 ≮ v2 ⇒ v2 ∈ N

′

Then define →′ as follows: For v1, v2 ∈ N
′, v1 →

′ v2 iff:
(1) v1 → v2
(2) if ∃ w ∈ N. v1 → w and v2 is a local root of w; or,

(3) if ∃ w ∈ N. w → v2 and w < v1.
The tuple ⟨N ′, l↾N ′ ,→

′⟩ is a hicase view.

It is easy to see that the skeleton is a special case of a hicase

view.

Theorem 4 (A Skeleton is a View). The skeleton ⟨Ns, ls,→s⟩
is also a view of a hicase ⟨N, l,→,≤⟩.

Proof. By definition Ns ⊆ N and the conditions on →s match

the first two conditions for a view. For the final condition,

which states if ∃ w ∈ N. w → v2 and w < v1, note that v1 ∈ Ns

is a leaf and therefore there is no such w.

More generally, any view forms a safety case.

Theorem 5 (A View is a Safety Case). A hicase view

⟨N ′, l↾N ′ ,→
′,�↾N ′⟩ of a hicase ⟨N, l,→,≤⟩ satisfies the well-

formedness properties of a safety case.

Proof. Firstly, we need to show that →′ forms a finite forest.

In fact, it forms a tree. It is straightforward to show that it

is rooted by a goal, since the underlying hicase must also

be rooted by a goal (and the closure property ensures that it

is chosen). To show that connectors only leave strategies or

goals, we reason about the possible source of v1 →
′ v2. Either

v1 → v2, in which case the property holds trivially; or, v1 → q
for some w which is again trivial; or, finally, w → v2 and

w < v1 for some w. In the final case, note that w is a hinode

and therefore l(w) ∈ {s, g, e}. If it is a strategy or goal, we are

done. If it is evidence, we derive a contradiction because by

definition w ↛ v2 for any v2. Similarly for other cases.

IV. APPLICATION

Our implementation of hicases in AdvoCATE closely

matches the formalization described earlier (Section III). Fig. 3

shows the hierarchisation of the flat argument structure of

Fig. 1. As shown, the higoal HG2 contains additional hinodes

(all in their closed view) besides those shown in Fig. 2. In

particular, HG2 contains the additional hinodes HS2 and HS3,

which were hidden in Fig. 2, besides HS1 and HE1. Whereas

the fragment supporting goal node G15 has been abstracted as

the hierarchical evidence node HE2, observe that the fragment

supporting goal node G18 is, rather, a hierarchical strategy

(HS3) owing to the ‘◇’ annotation on the supporting strategy

(node S10) indicating incompleteness (See Fig. 1). The higoal

HG1 contains a hierarchical evidence node HE1, both of which

have been presented in their open view.

The open and closed views in AdvoCATE, as shown in

Fig. 3, can be seen as modelled by the views formalised in

Definition 9. The only difference is that the open view in

AdvoCATE keeps the contents of the ‘opened’ hinode visible,

whereas the formal notion is designed so that a view is, itself, a

flat safety argument, but with no notion of visibility. Addition-

ally, the ability to create hinodes in AdvoCATE is governed by

Definition 8. The benefit of hierarchical abstraction on the size

of a safety case is immediately apparent in Fig. 3 where, after

hierarchisation and progressively closing the hinodes (i.e., also

closing the higoals HG1 and HG2), we can reduce the size of

Fig. 1, from 45 nodes, to only 6 nodes.

V. RELATED WORK

Hiproofs [11] are the immediate inspiration for hicases, and

we follow the hiproof notation for the graphical representation

of hicases. Hiproofs could be viewed as a more general model

(for hierarchical trees) than safety cases, without the particular

node typing present in hicases. An alternative understanding

would be to consider a hiproof as the strategy/evidence subset

of our hicase representation (where the flow of goals is

represented by the connections). However, hicases go beyond

hiproofs by distinguishing multiple node types and requiring

a more complex condition on hierarchy. Although there are

several theorem provers and proof assistants which support hi-

erarchical proof to varying degrees, the specific data structures

they use have details which are not central to an understanding

of hierarchy [11].
The GSN safety case notation has a concept of module.

Modularity allows safety cases, as with other artifacts, to be

decomposed into discrete modules so as to contain change

impact, support distributed development, etc. Hierarchy, on

the other hand, permits a system to contain sub-systems

of the same kind. The concepts are thus distinct, though

complementary; if modules can themselves contain modules,

this results in hierarchical modularity [15]. However, there are

important differences between modularity and hierarchy for

safety cases.
Whereas away objects [2] are simply references to argument

fragments in another module, a hinode is an additional node

enclosing an already existing argument structure in the current

argument. Moreover, hinodes and modules encompass differ-

ent fragments. For example, a GSN module cannot correspond

to a hierarchical strategy, i.e., a fragment beginning with a

strategy, as an enclosure of an arbitrarily complex (unfinished)

safety case fragment. Similarly, a module can contain multiple

argument fragments (resulting in multiple roots), while a

hinode always encloses a fragment with a single root. Modules

also have informal contracts that they must fulfill to be

well-formed, but hinodes do not enforce any such semantic

constaints between nodes. Furthermore, while there is a formal

basis for hierarchy (now), GSN modules do not (yet) have

a formal basis. Thus, we can exactly distinguish between

hierarchisable and non-hierarchisable fragments, whereas the

constraints on modularizing safety cases are less clear. We plan

to place GSN modules on a formal footing, and investigate

more fully the relationship with hierarchy.
Safety case hierarchy using a notion of argument structure

depth has been previously proposed [16], and represented as a

basic decomposition. Although this approach can create the

equivalent of hierarchical evidence, it cannot hierarchically

abstract strategies, as in our approach, where we consider node

combination for meaningful abstraction.

VI. CONCLUSIONS AND FUTURE WORK

This paper advances our previous work [12], [13] on hi-

erarchical structuring, by more precisely clarifying hierarchi-

cal safety cases and their properties. In particular, we have

formally defined a skeleton operation as the unfolding of a

hicase into a flat safety case, the notion of hicase view, the

conditions for hierarchisation, and proved the correctness of

these operations.
There are many interesting avenues for future development

of hierarchy in safety cases. However, since our current theory

only accounts for the core GSN, one key task is to extend the

notion of hierarchy to also account for patterns and modules.

Secondly, we would like learn potential hierarchical structure,

e.g., using metadata, after which one might be able to abstract

hierarchical patterns from existing safety cases.

We believe that both a formal basis and tool support are

crucial for improving the credibility and wider acceptance of

structured safety arguments during the certification of safety-

critical products. Our goal has been to provide an abstract

specification of hierarchy for safety cases, and a corresponding

implementation. The theory provides a formal foundation to

the implementation of hicases in our toolset, AdvoCATE [7],

providing features for constructing, modifying, and viewing

hinodes. To the best of our knowledge, this work describes

the first implementation of hierarchy for safety cases.

ACKNOWLEDGEMENT

This work was supported by the AFCS element of the SSAT

project in the Aviation Safety Program of NASA ARMD.

REFERENCES

[1] R. Bloomfield and P. Bishop, “Safety and Assurance Cases: Past,
Present and Possible Future—an Adelard Perspective,” in 18th Safety
Critical Systems Symp., pp. 51–67, 2010.

[2] Goal Structuring Notation Working Group, “GSN Community Standard
Version 1,” Nov. 2011.

[3] EUROCONTROL, “Preliminary Safety Case for ADS-B Airport Sur-
face Surveillance Application,” Tech. Rep., Nov. 2011.

[4] E. Denney and G. Pai, “Evidence Arguments for Using Formal Methods
in Software Certification,” in Proc. 2013 Intl. Symp. Soft. Reliability
Eng. Workshops (ISSREW), Nov. 2013, pp. 375–380.

[5] E. Denney, I. Habli, and G. Pai, “Perspectives on Software Safety Case
Development for Unmanned Aircraft,” in Proc. 42nd IEEE/IFIP Intl.
Conf. Dependable Systems and Networks (DSN 2012), Jun. 2012.

[6] A. Wassyng, T. Maibaum, M. Lawford, and H. Bherer, “Software
Certification: Is There a Case Against Safety Cases?” in Foundations
of Computer Software, Modeling, Development and Verification of
Adaptive Systems, LNCS no. 6662, pp. 206–227, 2011.

[7] E. Denney, G. Pai, and J. Pohl, “AdvoCATE: An Assurance Case
Automation Toolset,” in Computer Safety, Reliability and Security
(SAFECOMP) Workshops, LNCS no. 7613, 2012.

[8] E. Denney and G. Pai, “A Lightweight Methodology for Safety Case
Assembly,” in Computer Safety, Reliability and Security (SAFECOMP),
LNCS no. 7612, pp. 1–12, 2012.

[9] E. Denney and G. Pai, “A Formal Basis for Safety Case Patterns,”
in Computer Safety, Reliability and Security (SAFECOMP), LNCS no.
8153, pp. 21–32, 2013.

[10] E. Denney, G. Pai, and J. Pohl, “Heterogeneous Aviation Safety Cases:
Integrating the Formal and the Non-formal,” in 17th IEEE Intl. Conf.
Engineering of Complex Computer Systems (ICECCS), Jul. 2012.

[11] E. Denney, J. Power, and K. Tourlas, “Hiproofs: A Hierarchical Notion
of Proof Tree,” Electr. Notes Theor. Comput. Sci., vol. 155, pp. 341–
359, 2006.

[12] E. Denney, G. Pai, and I. Whiteside, “Hierarchical Safety Cases,” in
NASA Formal Methods Symp., LNCS no. 7871, pp. 478–483, 2013.

[13] E. Denney and I. Whiteside, “Hierarchical safety cases,” NASA Ames
Research Center, Tech. Rep. NASA/TM-2012-216481, Dec. 2011.

[14] R. Berthold, E. Denney, M. Fladeland, G. Pai, B. Storms, and
M. Sumich, “Assuring Ground-based Detect and Avoid for UAS
Operations,” in Proc. 33rd IEEE/AIAA Digital Avionics Systems Conf.
(DASC). Oct. 2014.

[15] M. Blume and A. W. Appel, “Hierarchical Modularity,” ACM Trans.
Prog. Lang. and Systems, vol. 21, pp. 813–847, Jul. 1999.

[16] G. Stone, “On Arguing the Safety of Large Systems,” in 10th Australian
Workshop on Safety-Related Programmable Systems, vol. 162, pp. 69–
75, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Verdana
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

